
J .  Fluid Mech. (1989), vol. 198, p p .  543-555 

Printed in Great Britain 

543 

Modulated stagnation-point flow and 
steady streaming 

By GREGORY J. MERCHANT AND STEPHEN H. DAVIS 
Department of Engineering Sciences and Applied Mathematics, Northwestern University, 

Evanston, IL 60208, USA 

(Received 29 December 1987 and in revised form 1 June 1988) 

Plane stagnation-point flow is modulated in the free stream so that the velocity 
components are proportional to K ,  + K cos wt. Similarity solutions of the Navier- 
Stokes equations are examined using high-frequency asymptotics for K and K ,  
of unit order. Special attention is focused on the steady streaming generated in 
this flow with strongly non-parallel streamlines. For small modulation amplitude 
K < K,, unique self-similar streaming flows exist. For large modulation amplitude 
K > K,,  if ( K / w )  (K/K,) 2 1.661 no self-similar streaming is possible, while if 
$ < ( K / w )  (K/K,) < 1.661, then multiple steady solutions occur. 

1. Introduction 
A solid body oscillates with angular frequency w and amplitude A in an otherwise 

motionless fluid of kinematic viscosity Y. For small values of A ,  there is an O ( A )  
Stokes layer on the body of thickness 6 = ( v / w ) i .  At order (A') a steady-streaming 
field is set up through the rectification of the periodic forcing by the advective 
nonlinearities. Schlichting ( 1932) first discovered such flows when considering small 
two-dimensional oscillations of a cylinder along its diameter and attributed the 
steady streaming to the action of Reynolds stresses in the Stokes layer. Rosenblat 
(1959) showed in the analogous case of a torsionally oscillation disk that the steady 
streaming occurs on a scale 8, near the body where 6, = 6 / A ;  thus 6, 9 6. Stuart 
(1966) showed that the steady streaming could be desribed by a steady-streaming 
Reynolds number R, which governs the thickness of the drift layer; if R, 9 1, 
there is @ secondary boundary layer while if R, < 1 ,  the drift has a creeping-flow 
character. 

This double-layer structure for small A occurs not only in the case of oscillating 
bodies and torsionally oscillating disks, but is typical of viscous fluids flowing with 
zero mean. It also occurs with pulsatile flows in tapered tubes (Hall 1974; Grotberg 
1984), and in wave fields in viscous flows (Longuet-Higgins 1953). Many of the above 
issues have been reviewed by Riley (1965, 1975). For bounded flows, such as those 
in fluid-filled channels with pulsating walls (Secomb 1978) or between torsionally 
oscillating disks (Rosenblat 1960) no second boundary layer is formed. 

When a mean flow is present, small-amplitude modulation can lead to similar 
behaviours. Lighthill (1954) examined a modulated external flow about a cylindrical 
body and obtained the Stokes-layer correction to the external flow. Ishigaki (1970) 
examined the similar case of stagnation-point flow with special attention paid to the 
skin friction on the plate. Neither Lighthill nor Ishigaki calculated effects of steady 
streaming. Pedley (1972) analysed the modulated laminar boundary layer on a semi- 
infinite flat plate for a range of Falkner-Skan problems including stagnation-point 
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flow. Matunobu (1977) studied pulsatile Hiemenz flow for the cases of small 
frequency and amplitude by examining the linearized vorticity equation. 

Consider now stagnation-point flow, modulated in the free stream, so that the 
velocity components are proportional to K, + K cos wt. Such a flow simulates the 
effects of impinging sound waves on the boundary layer of a blunt-nosed body 
(Morkovin 1978) and so is used to  study boundary-layer receptivity. It may simulate 
the locally hyperbolic streamlines present in a cellular, pulsating flow on a plate, a 
useful idealization when contemplating the efiects of time-periodic convection on a 
directionally solidifying crystal. 

Grosch & Salwen (1982) studied modulated stagnation-point flow by examining 
the Navier-Stokes equations, seeking unsteady similarity solutions and analysing 
steady streaming for high and low frequencies and small amplitudes. Pedley (1972) 
analysed the boundary-layer equations, studied high and low frequencies for unit- 
order modulation amplitudes but avoided reverse outer flows and concentrated on 
skin-friction effects. 

The present work extends that of Pedley (1972) and Grosch & Salwen (1982) by 
analysing the Navier-Stokes equations and examining high frequencies and unit-order 
amplitudes so as to study steady streaming in the presence of reverse outer flow driven 
by large temporal modulations. In this way one can obtain new insights into the 
structure of the steady streaming. In  agreement with Grosch & Salwen (1982) we find 
that the steady streaming can be calculated without the analysis of the double 
boundary layers and we find that the streaming is confined to the steady Hiemenz 
layer of thickness ( v / K H ) :  even for large modulation amplitudes. When the 
modulation is small K < K,, the steady streaming is unique. When the steady, 
Hiemenz flow is small K > K,, and (K/K,) ( K / w )  3 1.661, there exists no self- 
similar streaming, and if K > K, and $ < (K/K,) ( K / w )  < 1.661, then these steady- 
streaming flows are non-unique. This steady streaming has an outer structure 
identical to  that of a boundary layer over an upstream-moving semi-infinite 
plate. 

2. Formulation 
An incompressible Newtonian fluid of a kinematic viscosity v flows against a plate 

a t  y = 0. The coordinates (x, y) lie, respectively, along and normal to the plate; the 
corresponding equations can be written in terms of the stream function $ and w3, the 
z-component of vorticity, as follows : 

+ 1C.Y @ 3 2  - $2 @ 3 y  = v ( w 3 2 2  + w 3 y y )  

and 

where subscripts denote partial differentiation. Here, 

- w 3  = $22 + $yyr 
( 2 . 1 ~ )  

( 2 . l b )  

(% v) = WY> -$A (2 .2 )  

Far from the plate, y + 00, the velocity field is taken to be that of plane stagnation- 
point flow of an inviscid fluid upon which a modulation is superimposed. At 
infinity 

U =  x(K,+Kcoswt), ~=-yy(K,+Kcoswt), (2.3a, b )  

where K and K ,  denote the magnitudes of the oscillatory and steady fields, 
respectively, and w is the angular frequency of the oscillation. 
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At the plate the conditions of no penetration and no slip apply. 
We seek similarity solutions for (2.1) of the form 

u = ?f&> t ) ,  2, = - f  (y, t ) ,  (2.4a, b)  

which reduces (2.1) to the form 

-fyyt - f y f y y  +&/y + ~fy,,, = 0. (2.5) 

f + y ( K , + K  coswt) as y-fco, (2.6) 

Upon integration once with respect to y and the use of the far-field condition 

(2.5) gives 

- f y t  - f," +ffyy + vfyuy = Kw sin wt - ( K H  + K cos wt)2,  ( 2 . 7 ~ )  

with the boundary conditions 

f = f y = O  a t  y = 0 ,  

f y + K , + K c o s w t  as y-tco. 

(2.7b) 

( 2 . 7 ~ )  

In  scaling system (2.7) we use the larger of the magnitudes of K ,  and K .  On the 
one hand, if K ,  > K ,  we have modulated Hiemenx flow and we introduce the non- 
dimensional variables as follows : 

7 = (KH/v)ay ,  f = ( K , v $ F .  

If we substitute forms (2.8) into system (2.7), we obtain 

( 2 . 8 ~ )  

(2.8b) 

- QFV7 - F: + FFv7 + FvVq = 526 sin r - (1 + S cos T ) ~ ,  ( 2 . 9 ~ )  

F = F , = O  a t  7 = 0 ,  (2.9b) 

F,,+l+Scosr as 7+m, ( 2 . 9 ~ )  

where 0 Q 6 Q 1. 
On the other hand if K > K,, we have quasi-pulsatileflow and we replace K ,  by 

K in the scales (2.8) and introduce the new variables .;I and P .  The system (2.7) 
becomes 

(2.10 a )  

F = F + = O  a t  i = 0 ,  (2.10b) 

A 1  - ^ A  1 

-  OF+^ - F; + FF++ + F+++ = B sin 7 - (A + cos T)*, 
. . -  

pG+A+cosr as $+a, (2.10c) 

with A = K , / K  (2.11) 

where 0 Q A < 1. 

large w via the parameters 52 and h with S or A being unit order. 
The nonlinear partial differential systems (2.9) and (2.10) are now examined for 
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3. Asymptotic expansion for large frequency 

Hiemenz flow, K ,  2 K ,  and define a small parameter E by 
We aim to find solutions periodic in 7 .  First, consider system (2.9) for modulated 

The governing equation is then of a singular type as E + 0 and can be solved by means 
of matched asymptotic expansions. The inner variables are chosen to be 

6 = r / e ,  $ ( E ,  7 )  = F ( r ,  7 ) .  (3 .2a,  b )  

Note that, via c, y is now scaled on the Stokes boundary-layer thickness 

E(V/KH)i  = ( v / w ) i ,  

while the outer variable ?I, is y scaled on the Hiemenz boundary-layer thickness (v/ 
K,);. This part of the analysis closely parallels those of Pedley (1972) and Grosch &, 
Salwen (1982) ; we summarize the results for completeness. 

3.1. The outer expansion 

In terms of the outer variables (2.9) becomes 

-F?l ,+~2[-F~+FFB?l+F?lBB] = Ssin7-e2[1+&Y2+26 c o s ~ + ~ S ’  C O S ~ T ] ,  (3 .3a)  

F7+i+6cos7  as r+m. (3.3b) 

We seek a solution of the form 

F ( r , 7 )  = F o ( r , 7 ) + ~ F l ( r , 7 ) + ~ ~ ~ F 2 ( 2 ( 1 ; 1 , 7 ) + ~ ~ F 3 ( r , 7 ) +  ... . (3.4) 

The leading-order solution is 

Eb(r,7) = 67 cos7+fO(~) +g0(7 ) ,  (3 .5a)  

where the arbitrary functions f o ( q )  and gJ7) are determined from matching to the 
inner solution and from secularity conditions. Arbitrary functions of this type appear 
in each subsequent term of the outer expansion. The other terms in the outer 
expansion are 

F1(~,7) = f l ( ~ ) + g l ( 7 ) ,  (3.5b) 

(3.5c) 

and p3(r, 7 )  = 6Lr.f; - 3f i l  6 sin 7 - 6Sfh sin (7 -;IT) + f 3 ( y )  + g3(7) .  (3 .5d )  

Restrictions are placed on f6(r) ,  i = 0,1 ,2 ,3 ,  so that the solutions are periodic in 7;  

these are given below. 

J’kr, 7 )  = 21211 - 3f0  + r f J 6  sin 7 +fz(r) + g A 7 ) ,  

The functions f o ( q )  and fl(r) satisfy 

and 

(3 .6a)  

(3.6b) 

It is shown later that fl(r) = 0. By using this the equations for fi(r) and f3 ( r )  
become 

f ~ + f 0 f ~ - 2 f ~ f ~ + f 6 f { = 0 ,  i = 2 ,3 .  ( 3 . 6 ~ )  
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3.2. The inner expansion and matching 
If we rewrite system (2.9) in terms of the inner variables [ and $ given by (3.2a, 6) ,  
we obtain 

- $t, + $'sss+ S[  - @i + $$rss] = SS sin 7 - s'[ 1 + as2+ 28 cos 7 + as2 cos 271 (3.7 a) 

$ = $ ' s = O  at t = 0 .  (3.7 6) 

Again we seek a solution of the form 

$(t, 7) = $&t, 7) + E @ 1 ( t , 7 )  + k 2 $ 2 ( t ,  7) +&'$3(Er 7) + * * * . (3.8) 

$ 0 ( 6 , 7 )  = 0, (3.9a) 

$ z ( t ,  7) = 2 c F ,  (3.9c) 

The functions $Jt, 7), i = 0 , 1 , 2 , 3  (after matching with the outer solution) are given 
by 

$r1((,7) = a[( cos7-co~(7- -a , )+e-s~~~ cos(~-(/1/2--$a,)] (3.9b) 

and 

$3( f ,7 )  = -('++S2 --3(-31/2 e-Eld2 c o s ( [ / 1 / 2 ) + 1 / 2  e-'s/v'2 sin ((/1/2) 
K 2  

1 1 -- edZ5-2[ e-[Id2 sin ([/1/2)-6 e d d 2  cos ([/1/2-$) 

+12S[( s i n 7 + ~ 0 ~ ( 7 + - a , ) - e - f ' ~ ~  cos(7-[/1/2+tn)] 

d 2  

-+s2[1/2 cos (27 +in) - 4 2  ec5 cos (6- 27 +$) - 25 e-5/v'2 sin ([/1/2 - 27)], 
(3.9d) 

where c is a constant. Imbedded within the solution 7) is the Stokes shear wave 
(with a phase shift of +a,), which enforces the no-slip condition a t  the surface of the 
plate consistent with the oscillatory flow near the surface. 

The following results were obtained from the matching process. The functions 
gi(7), i = 0,1,2,3, appearing in (3.5) are given by 

g0(7) = 0, g1(7) = -6 cos (7-@), g2(7) = 0, (3.10a, b, c )  

g3(7) = 12s COS(7+~7 t ) -*~z  COS(27+~7C); (3.10d) 
2 

and 

( 3 . 1 1 ~ )  

where F H ( y )  is the solution to the Hiemenz equations for steady stagnation-point 
flow. The solution is unique and is well-tabulated in numerical form (cf. Rosenhead 
1963, p. 232). It has the small-q expansion 

(3.116) 

where c x 1.232588 and is the constant appearing in (3 .9~) .  We find that 

(3.11c, d) 
3s2 

fib) = 0, fib) = - z F h ( v ) ,  
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fj"+fOf:-2f,'f,'+f;f, = 0, (3.11e) 

The solution f3(y) must be obtained numerically. 
The solutions obtained for fi(r), fi(r) and f3(r) are assumed to be unique, in that 

no eigenfunctions exist that solve equations of the form ( 3 . 6 ~ )  with homogeneous 
boundary conditions. In his analysis Pedley (1972) concludes for stagnation-point 
flow that no eigenfunctions exist and so the solutions can be fully determined. Our 
selected numerical work performed on (3.11 e ,  f) supports this view. 

The composite expansion for F ( r , 7 )  is then given by 

F ( r , 7 )  = FH(l;l)+Sr COST 

+e[b e-T/'d2 cos ( ~ - - y / e 4 2 - @ ) - 8  cos ( T - ~ z ) ]  

3 P  
4c - 26(27 + yFf, - 3FH) sin 7 - - F& 

J - 

+ +e3[ - 9 4 2  s2 e-vl' d 2  cos ( q / e  4 2 )  - 3 4 2  S2 e-T/"d2 sin (?/e 4 2) 

-:2/2s2 e-d2v/'-126 e-T/ed2 cos ( T - - / E ~ ~ + ~ I G )  

-6dFL sin (7-~7c)+g42S2 e-T/t C O S ( ~ , I / € - ~ ~ - ~ Z )  

+ 12s COB (7 + an) - $ 4 2  a2 Cos (27 + 4.) +f,(r)] + . . . . 

e-q/"v sin ( q / s  4 2 )  + S2r e-vltd2 sin ( r / e  4 2  - 27) 

(3.12) 

A notable feature of oscillatory-flow problems is the occurrence of steady streaming 
which originates in the Stokes layer of thickness ( v / w ) i  owing to the action of 
Reynolds stresses (Schlichting 1932) and persists beyond it. In  the present problem 
the steady streaming is confined to  the Hiemenz boundary layer of thickness 
( v / K H ) i ,  which is of the order e-l thicker than the Stokes layer. The steady streaming 
of (3.12) with the FH(y)  term subtracted out is shown in figure 1. It can be seen that 
near the plate there is a drift away from the stagnation point and return flow above 
the plate. 

For oscillatory flow in the absence of a mean the steady-streaming boundary layer 
has been noted to be considerably thicker than ( v / K H ) i ,  namely of the order eW2 times 
the Stokes layer (cf. Rosenblat 1959; Stuart 1966; Riley 1975). In order to gain an 
understanding of this difference, A = K,/K will be considered to be small and the 
quasi-pulsatile form of the system will be considered. For the asymptotic analysis K 
will be considered fixed and K ,  will vary; thus all variables will be scaled on K .  

3.3. Small mean flow 
Consider system (2.10) which contains the parameter A = K,/K. Again, we seek 
solutions for large 6, where the small parameter e is now scaled on K such that 

- w l  
Q = - = -  

The mean flow approaches zero as KH+O so that A + O .  The Hiemenz boundary- 
layer thickness, written now in terms of K ,  is given by 

(A)-$  (v /K) i  (3.13) 

K Z 2 '  
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FIGURE 1. Steady-streaming horizontal-velocity component along the wall (at x = 1) versus the 
normal ?-coordinate. Here u, represents the horizontal velocity contribution from Hiemenz flow 
and us the total steady horizontal velocity component. 

so that when A = 0(1), K - KH and (3.13) reduces to the steady Hiemenz boundary- 
layer thickness. For the Hiemenz and steady-streaming boundary layers to coincide 
one would expect A to be of the order P.  To investigate this case, A is rescaled as 
follows : 

A = Ji?, d= O(1). (3.14) 

If at the end of the analysis we take A =  0(Zp2),  so that A = 1, the previous solution 
(3.12) should be recovered, with 6 = 1, and as d + O  the problem should reduce to 
that of zero-mean flow. 

Eqpation (2.10) is rescaled on$he Stokes-layer thickness (i = $/2, $([, 7) = % ( f / ~ ) )  
and @ is scaled such that $ = $6, to obtain 

- 

$ = $ [ = o  a t  [ = o ,  (3.15b) 

$g=Ae2+cos7 as E+m. (3.15~) 

The above equation is singul5r with non-uniformity at infinity. To obtain the outer 
form of the problem, 3 and are rescaled such that 

and 

o([, 7) = $([, 7 )  - [[ cos 7 - cos (7 - i x ) ] ,  (3.16a) 

5 = 2 y ,  (3.16b) 

G(5 ,7 )  = Gel,.,. (3.16 c) 

This gives for the outer problem 

- GC- + Z2[[Gcc - 2GJ cos 7 + 2*[GCCc + G,2 + GG, - cos (7 - $c) GCs] 
= 2 E 2  c 0 ~ 7 - ( ( 4 ) ~ & ~ ,  (3 .17~)  

G , = A  as <+a. (3.17 b) 
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Proceeding as before, the solutions to the inner, (3.15), and outer, (3.17), equations 
are considered to be of the forms 

$(&) = 1 1 ; o ( [ , 7 ) + i $ l ( ~ , 7 ) + ~ ~ 2 ( [ , 7 ) + Q E 1 3 $ 3 ( ~ , 7 ) +  ... (3.18a) 

G ( L 7 )  = Go([,7)+6Gl(C,7)+~2G2(L7)+)EA3G3([,7)+ ..., (3.18 b)  

respectively ; again arbitrary functions that appear in the solutions a t  each order are 
determined from secularity and matching conditions. 

I n  the outer region, 

and 

We summarize the results as follows: 

GO(L 7 )  = f O ( , c a ?  G,(L 7 )  = fl(C), (3.19a, 6 )  

1 
G,(g, 7 )  = 4df; sin 7 + 2[(fL - 3f0] sin 7 +f,( 5) - - cos (27 +in), (3.19 c )  

4 2  

(3.20 a )  

(3.20 b )  

-+[42 cos (27++n)-42 e-lcos ( % - 2 ~ - 2 n ) - 2 2 $ e - ~ ~ ~ ~ s i n  ([ /42-2~)]  
(3.20 c )  

$&) = 0. (3.20d ) 

and 

The functions fO(c), fl(C) and f 2 ( [ )  satisfy the following relationships : 

f:-f;2+fof:+(4_)2 = 0, (3.21 a )  

(3.21 b )  

(3.2 l c )  

(3.21d) 

j O ( O )  = 0, fL(0) = -4, &Co)  = d; 

f ;  - 2f; f; +fl f; +fa f; = 0, 

f1(O) =fi(O) = f i ( C o )  = 0;  
and 

&2f;&+f2f;+Lk = 0, (3.21 e) 

(3.21n 

The only solution to (3.21 c, d)  isfl(g) = 0 so that oncefo(C) is obtained, (3.21 e , f )  can 
be numerically integrated to give f,([). The function f 3 ( [ )  is not calculated since two 
higher-correction terms in both the inner and outer expansions are required before 

13 fm = 22/2? h(0) = 0, h(Co) = 0. 
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0 0.2 0.4 0.6 0.8 1.0 1.2 I 1.4 1.6 1.8 2.0 
A c  

A 

FIQURE 2. Solution branches of system (3.23) with A = 3/46and d= ( K , / K )  ( w / K )  with 
w / K  $ 1 .  Here A, x 1.246. The dashed curve is due to Riley & Weidman (1989). 

the governing equation and boundary conditions are known. The composite 
expansion for #($ ,7 )  is then given by 

P($,  7 )  = $ cos 7+2[f0(24) - cos (7-in) + e-$/t^d2 cos ( 7 - $ / 2 4 2 - - * n ) ]  

- 9 4 2  e-$l'd2 cos ( $ / 2 4 2 ) - 3 d 2  e--Q/E1d2 sin ($1242)  

++i2[-q e-q/'d2 sin($/21/2)+$ e-f/bdz sin ( $ / 2 1 / 2 - 2 ~ ) ]  

- A A  A A  3 + 6[qfL(~71) - 3fl,(6$)] sin 7 - ~ cos (27 +in) + 3f2(2$)] + . . . . (3.22) 

System (3.21a, b )  can be rewritten such that x = (@[ and fo([) = (d)i#(x) to 

4 2  

give 
qY' + ##" - $2 + 1 = 0, (3.23 a )  

#(0) = 0, $' (O)  = - A ,  #'(oo) = 1, (3.23 b )  

where A = 3/4zand primes denote derivatives with respect to x. This portion of the 
outer solution represents a stagnation-point flow with an imposed tangential 
velocity a t  the surface of the plate opposite in direction to that of the free stream. 
This situation arises in the present problem owing to the steady streaming (figure 1 )  
generated by the oscillatory flow. 

The negative velocity profile of small amplitude that persists outside the Stokes 
layer is matched within the Hiemenz boundary layer, ( v /KH)f .  System (3.23) is 
interpreted as the matching across this boundary layer of the mean flow with the 
negative steady streaming profile. 

For small A (large z), (3.23) can be solved by a perturbation method to yield 

(3.24) 
A 
2c 

$(X) = FH(Z) - -F&(x)+  ..., 



552 G. J .  Merchant and S .  H .  Davis 

1.50 

1.13 

7 
0.75 

0.38 

-1 I I I I 
0 0.38 0.75 1.13 1.50 

X 

FIGURE 3. Typical streamlines of the steady flow field for d= 2.5Eit, where (K,,/K) = d ( K / w )  
and K / w  < 1. The line x = 0 is the centreline of the flow field. 

so that 

-14,. 3 - 1  - 1  A "  f,(&j) - (d)~)tFH[(A)%~)]--(A)"H[(A)"sy)]+ ... . 
8C 

(3.25) 

As dapproaches tp2 so that A + 1, (3.22) reduces to (3.12) with S = 1. 
The solution of system (3.23) is sought numerically by using a combination of a 

RungeKutta  scheme and a shooting method. The results indicate that there is a 
critical value of A, A, z 1.246, above which no solutions exist, and for which when 
1.19 < h < A, the solution is non-unique (see figure 2). The numerical scheme we use 
breaks down for values of h below about 1.19. Recently, Riley & Weidman (1989) 
have considered a class of Falkner-Skan boundary layers within which system (3.23) 
is included. By use of careful numerical and asymptotic analysis they too find the 
value A, and are able to continue the curve to values of h below 1.19. Thus, for system 
(3.23) there are no solutions for h > A, and non-uniqueness for 1 < h < A,. 

The implications of the existence of A, in this problem are that there are no 
solutions for vanishing mean flow and the smallest amount of mean flow allowed is 
approximately of the order (3/4h,) Z2. As the mean flow vanishes, the Hiemenz-layer 
scale disappears and this type of similarity is lost. Near the value of A, there is no 
visible difference between the solutions along the two different branches of the curve. 
Considering only the steady components of the solution (3.22), at A near A,, there 
exist two cells, a thin one near the surface of the plate and a much thicker one 
adjusting the direction of the velocities to that of the outer flow (see figure 3). As h 
decreases towards zero (following the top branch), the larger cell gets reduced in size 
until there is an abrupt transition from two cells to no cells. The shrinking of the 
outer cell can be seen in figure 4 which shows the evolution of the nodes (position of 
zero velocity) as h is decreased from Ac to zero. The maximum horizontal velocities 
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A- = ZA-1 

FIGURE 4. The position of the node in the horizontal velocity in the steady flow field as a function 
of d= ( K J K ) ( w / K ) :  ---, the first node; -, the second node. Within the shaded region no 
similarity solutions exist. The lines begin at the position d= 3/4h, and terminate where no reverse 
flow is present. 

0.02 

0.01 
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-0.01 

-0.02 
0 1 .o 2.0 3.0 4.0 5.0 6.0 

A- = ZA-1 

FIGURE 5. The direction and magnitude of the local maximum and minimum horizontal velocity 
profile (at x = 1) for the steady flow field plotted against d= (K,/K) (w /K)  = 3/4h: -, the first 
local peak; ---, the second local peak. Within the shaded region no similarity solutions exist. The 
lines begin at the position d= 3/4h, and terminate where the outer mean flow completely 
dominates the streaming profile. The cross-over point corresponds to the termination point in 
figure 4. 

present in the cells are shown in figure 5, with the larger cell beginning with a 
negative velocity which is decreased as the strength of the mean flow increases. The 
cross-over point, where both velocities become positive, indicates the position of 
extinction of both cells. 

The lengthscales involved in the problem and their various magnitudes are 
displayed in table 1. Figure 6 contains a summary of the evolution and extinction of 
cells while showing the various lengthscales. 
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U, 3w us 1 . 6 6 1 ~  K / K H  
us-uH 'S 1 "  - - 

4K K 

FIGURE 6 .  The various lengthscales and horizontal velocity profiles (at 2 = 1) versus (A)-1 = K / K ,  
(for K ,  fixed). Here uH represents the horizontal velocity of the Hiemenz flow and us the  total, 
steady, horizontal velocity componen,t. For K / K ,  < 1 the  Stokes-layer thickness 6 = ( v / o ) z  an$ 
Hiemenz-layer thickness 6, = (v /K,)s  remain constant while the modulation layer 6,. = (v /K)I  
increases such that  6 Q 6, Q 6,,. In this region u, is totally dominated by the mean flow and 
us-uH is a minor par t  of uH. For K / K ,  > 1, 6 Q 6,. Q S,, and there is a noticeable contribution 
t o  us from us-uH. When + ( w / K )  < K / K ,  < 1.661(w/K),  non-unique profiles exist and for 
K / K H  > 1.661(w/K) the  similarity assumption breaks down. The region on the right in which no 
similarity solutions exist is shaded. 

K Q K ,  K & K H  

Hiemenz 6, = ( v /  K,);  Hiemenz 6, = (v /K, ) ;  
(streaming) (streaming) 

K t  v t  ~ 

w Stokes(--) (I() = €8,. = (:) 
6 Q S,, + 6,. = ( v / K ) i  6 Q 6,. Q 6, 

TABLE, 1 .  Relative lengthscales,and magnitudes. 6, and 6,. are the magnitudes of t,he Hiemenz 
(v/Kq)I and modulation (v /K)*  boundary layers repectively. 6 is the  Stokes-layer thickness 
( v / w ) I .  

4. Discussion 
Plane stagnation-point flow is modulated so that the velocity components in the 

free-stream potential flow are proportional to K,+K coswt. The flow, including 
the steady streaming, is examined for K ,  and K unit order and high frequency 

K ,  we have the modulated Hiemenz problem in which there are two scales 
of flow. There is the Stokes-layer thickness ( v / w ) i  and the Hiemenz boundary-layer 
thickness (u/K,)fi. Figure 6 shows that the steady drift is confined within the 
Hiemenz layer as shown by Grosch & Salwen (1982) for small modulation amplitude. 
The flow-induced steady streaming u,-uH is outward along the plate and inward 
above it. When the substantial Hiemenz flow uH is added to the drift, the total mean 
flow is only slightly perturbed from steady Hiemenz flow. 

(W/KH)$, (w/K)f  9 1.  
If K ,  
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If K 2 K, ,  we have a quasi-pulsatile flow ; there are again two scales offlow. There 
is the same Stokes layer and the Hiemenz layer (v/K,);. In this case if 

(K /w)  (K/’&) 2 1.661, 

no similarity solutions exist, while if 4 < ( K / w )  (KIK,) < 1.661 the solutions are 
non-unique (see Riley & Weidman 1989 for details of their numerical results). The 
drift, when it exists, is always confined to the Hiemenz layer of thickness (v/KH)i.  
This drift u,-uH is outward along the plate and it returns at a distance away from 
the plate. The steady Hiemenz flow coupled with the drift results in the appearance 
of cells close to the plate as can be seen in figure 6. 

Finally, the flow considered has strongly non-parallel streamlines and we have 
shown, following Pedley (1972) and Grosch & Salwen (1982), that for high 
frequencies, the steady drift can be described without the need to analyse the double 
boundary layers. When the equivalent of the streamline non-parallelism is small and 
expansions in its amplitude are used (cf. Rosenblat 1959; Stuart 1966; Riley 1965, 
1975), double boundary-layer matching is required. 

This work was supported by a grant from the National Aeronautics and Space 
Administration Program on Microgravity Science and Applications. 
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